

Электропривод вращения многооборотный

MODACT MOP

Типовой номер 52 039

KATAJIOF

1. ПРИМЕНЕНИЕ

Электроприводы **MODACT MOP, т. н. 52 039** предназначены для перестановки органов управления возвратным поворотным движением (например: задвижек и других устройств, для которых они по своим свойствам являются подходящими). В качестве типичного примера применения можно указать дистанционное двухпозиционное или многопозиционное управление этих органов, у которых требуется также тесный затвор в концевых положениях. Электроприводы с емкостным датчиком положения подходят также и для автоматической регулировки с режимом S4 –см. Режим работы.

2. РАБОЧАЯ СРЕДА, РАБОЧЕЕ ПОЛОЖЕНИЕ

Рабочая среда

Электроприводы **MODACT MOP** должны быть стойкими к воздействиям условий работы и внейшних влияний класса AC1, AD7, AE6, AF2, AG2, AH2, AK2, AL2, AM-2-2, AN2, AP3, BA4 и BC3 согласно ČSN 33 2000-5-51 изд. 3.

При расположении в открытом пространстве рекомендуется электропривод защищать легким навесом для защиты от прямых атмосферных воздействий. Навес должен выходить за пределы периметра электропривода на не менее 10 см на высоте 20 – 30 см.

При расположении электроприводов в рабочей среде с температурой ниже -10 °С, в среде с относительной влажностью более 80 %, в среде под навесом и в среде тропической следует всегда использовать отопительный элемент, который монтируется во все электроприводы. По необходимости включается один или оба отопительных элемента.

Использование электроприводов в рабочей среде с негорючей и непроводящей пылью возможно, если это не будет оказывать неблагоприятное воздействие на работу двигателя. При этом следует строго соблюдать требования ČSN 34 3205. Пыль рекомендуется устранять при достижении слоя толщиной прибл. 1 мм.

Примечания:

Пространством под навесом считается такое, которое обеспечивает защиту от прямого попадания атмосферных осадков под углом 60° от вертикали.

Расположение электродвигателя должно быть таким, чтобы охладительный воздух имел свободный доступ к нему и чтобы выбрасываемый теплый воздух обратно не забирался. Минимальное расстояние отверстия забора воздуха от стены составляет 40 мм. Пространство, в котором расположен двигатель, должно быть достаточно большим, чистым и проветриваемым.

Температура окружающей среды

Электроприводы **MODACT MOP, т. н. 52 039** изготавливаются для температуры окружающей среды от -25 $^{\circ}$ C до +60 $^{\circ}$ C.

Классы внешних воздействующих факторов

Основные характеристики - выдержки из ČSN 33 2000-5-51 изд. 3

- 1) АС1 высота над уровнем моря ≤ 2000 м
- 2) АD7 небольшое погружение, возможность периодического частичного или полного покрытия водой
- 3) AE6 тяжелая пыль; наличие больших отложений пыли в количестве более 350, но меньше 1000 мг/м² в сутки
- 4) AF2 наличие значительного количества химически активных и загрязняющих веществ в атмосфере, которое имеет важное значение
- 5) AG2 средняя механическая нагрузка в обычных условиях промышленной эксплуатации
- 6) АН2 средняя интенсивность вибраций в обычных условиях промышленной эксплуатации
- 7) АК2 серьезная опасность от воздействия растительности или плесени
- 8) AL2 серьезная опасность от присутствия животных (насекомых, птиц, мелких животных)
- 9) АМ-2-2 нормальный уровень сигнального напряжения; нет никаких дополнительных требований
- 10) AN2 среднее солнечное излучение; интенсивность $> 500~\text{и} \le 700~\text{Вт/м}^2$
- 11) AP3 средняя жесткость по воздействию сейсмических факторов; ускорение > 300 Gal и ≤ 600 Gal
- 12) ВА4 компетентность персонала; обученный персонал
- 13) ВСЗ частый контакт персонала с потенциалом земли; персонал, часто касающийся токоведущих частей или стоящий на проводящих поверхностях

Защита от коррозии

В стандартном исполнении электроприводы имеют лакокрасочное покрытие, соответствующее категориям коррозионной агрессивности C1, C2 и C3 по ČSN EN ISO 12944-2.

По желанию заказчика, электроприводы могут поставляться с лакокрасочным покрытием, соответствующим категориям коррозионной агрессивности С4, С5-I и С5-М.

В таблице приведен обзор типичных сред для каждой категории коррозионной агрессивности в соответствии с ČSN EN ISO 12944-2.

Степень коррозионной	Пример типичной среды							
агрессивности	Наружная	Внутренняя						
С1 (очень низкая)		Отапливаемые здания с чистой атмосферой, например, офисы, магазины, школы, гостиницы.						
С2 (низкая)	Атмосфера с низким уровнем загрязнения. В основном сельские районы.	Неотапливаемые здания, где может возникнуть конденсация, например, склады, спортивные залы.						
С3 (средняя)	Городская промышленная атмосфера, слабое загрязнение диоксидом серы. Приморские области с низкой концентрацией соли.	Производственные площади с высокой влажностью и низким уровнем загрязнения воздуха, например, пищевые, перерабатывающие заводы, пивоварни.						
С4 (высокая)	Промышленная среда и прибрежные районы с умеренной концентрацией соли.	Химические заводы, бассейны, прибрежные верфи.						
С5-I (очень высокая – промышленная)	Промышленная среда с высокой влажностью и агрессивной атмосферой.	Здания или среда с непрерывной конденсацией и высоким уровнем загрязнения воздуха.						
C5-М (очень высокая – морская)	Прибрежная среда с высокой концентрацией соли.	Здания или среда с преимущественно непрерывной конденсацией и высоким уровнем загрязнения воздуха.						

Рабочее положение

Электроприводы могут работать в любом рабочем положении.

3. РЕЖИМ РАБОТЫ, СРОК СЛУЖБЫ ЭЛЕКТРОПРИВОДОВ

Режим работы

Электроприводы могут работать в режиме работы S2 по стандарту ČSN EN 60 034-1. Продолжительность работы при температуре +50 °C составляет 10 минут и среднее значение момента нагрузки должно быть не более 60 % от значения максимального момента выключения M_V .

Электроприводы могут также работать в режиме S4 (импульсный ход с разгоном) по ČSN EN 60 034-1. Коэффициент нагрузки N/N+R составляет не более 25 %, максимальная длительность цикла работы N+R составляет 10 минут; эпюра нагрузки показана на рисунке. Максимальная частота включений при автоматическом регулировании составляет 1200 включений в час. Среднее значение момента нагрузки при коэффициенте нагрузки 25 % и при температуре окружающего воздуха +50 °C составляет не более 40 % от значения максимального момента выключения М_{УР}

Максимальное значение момента нагрузки равно значению номинального момента электропривода.

Эпюра рабочего цикла

Срок службы электроприводов

Электропривод, предназначенный для запорных арматур, должен обеспечить не менее 10 000 рабочих циклов (эакр. – откр. – эакр.).

Электропривод, предназначенный для регулирования, должен выполнить не менее 1 миллиона циклов при продолжительности работы (время, в течение которого выходной вал вращается) не менее 250 часов. Срок службы, выраженный количеством часов наработки (ч), зависит от нагрузки и от количества включений. Высокая частота включения не всегда положительно влияет на точность регулирования. Для обеспечения максимального бесперебойного периода и срока службы рекомендуется установить самую низкую частоту включений, которую допускает данный процесс. Ориентировочные значения срока службы в зависимости от установленных параметров регулирования приводятся в следующей таблице.

Срок службы электроприводов для 1 миллиона пусков

Срок службы [час]	830	1000	2000	4000
Частота стартов [1/час]	макс. к-во стартов 1200	1000	500	250

4. ТЕХНИЧЕСКИЕ ДАННЫЕ

Основные технические данные показаны в таблице исполнений

Напряжение питания электродвигателя 3 x 220/380 B +10 %, -15 %, 50 Гц; +3 % -5 %

3 x 230/400 B +10 %, -15 %, 50 Γμ; ±2 % 1 x 220 B +10 %, -15 %, 50 Γμ; +3 % -5 % 1 x 230 B +10 %, -15 %, 50 Γμ; ±2 %

(или данные на щитке)

Степень защиты

Степень защиты закрытых электроприводов: — IP 67 по ČSN EN 60 529

Шум

 Уровень акустического давления А
 макс. 85 дБ (A)

 Уровень акустической мощности А
 макс. 95 дБ (A)

Момент выключения

Момент выключения на заводеизготовителе устанавливается по требованию заказчика в соответствии с Таблицой 1. Если установка момента выключения не указана, то устанавливается максимальный момент выключения.

Пусковой момент

Пусковой момент – это расчетное значение, которое дано пусковым моментом электродвигателя, общим коэффициентом передачи электропривода и ее к. п. д. Электропривод может развивать пусковой момент после реверсирования хода в течение 1 – 2 оборотов выходного вала, когда заблокировано моментное выключение. Это может быть осуществлено в конечном или в любом другом положениях.

Самоторможение

Электропривод является самотормозящимся при условии, что нагрузка действует только в направлении против движения выходного вала электропривода. Самоторможение обеспечивается с помощью роликового останова, который фиксирует ротор электродвигателя и при ручном управлении.

С целью соблюдения требований техники безопасности не допускается использование электропривода для привода грузоподъемных устройств с возможной транспортировкой людей или грузоподъемных устройств с возможным присутствием людей под поднимаемым грузом.

Направление вращения

Направление »закрывает« при виде выходного вала в направлении к ящику управления совпадает с направлением вращения часовых стрелок.

Рабочий ход

Диапазон рабочего хода дан в Таблице исполнений но. 1.

Ручное управление

Ручное управление осуществляется маховиком ручного управления прямо (без муфты), и оно может осуществляться так же в течение хода электродвигателя (результирующее движение выходного вала определено функцией дифференциала). Путем вращения маховика ручного управления в направлении часовой стрелки выходной вал электропривода вращается также в направлении часовой стрелки (если смотреть на вал в ящик управления). При условии, что гайка арматуры имеет левую резьбу, электропривод закрывает арматуру.

Моменты в электроприводах настроены и функционируют, если электропривод находится под напряжением.

В том случае, если будет использоваться ручное управление, т. е. электроприводом будут управлять механически, то не функционирует настройка момента, и может произойди повреждение арматуры.

5. ОСНАЩЕНИЕ ЭЛЕКТРОПРИВОДА

Моментные выключатели

Электроприводы оснащены двумя моментными выключателями (МО – открывает, МZ – закрывает), каждый из которых предназначен для одного направления движения выходного вала электропривода. Моментные выключатели могут работать в любой точке хода кроме области, в которой они заблокированы. Значение момента выключения можно установить в пределах, указанных в Таблице 1. Моментные выключатели заблокированы для случая, когда после их выключения имеет место потеря момента нагрузки. В результате этого электропривод защищен от, так наз., самовозбуждения.

Выключатели положения

Выключатели положения (*PO – открывает, PZ – закрывает*) ограничивают рабочее перемещение электропривода (*каждый одно конечное положение*).

Сигнализация положения

Сигнализация положения выходного вала электропривода обеспечивается с помощью двух сигнальных выключателей (SO – открывает, SZ – закрывает), каждый из которых предназначен для одного направления движения выходного вала. Точка срабатывания микровыключателей может устанавливаться в пределах всего рабочего хода за исключением узкой полосы перед точкой выключения микровыключателя, который выключает электродвигатель.

Датчики положения

Электроприводы **MODACT MOP, т. н. 52 039** могут быть поставлены без датчика положения или могут быть оснащены датчиком положения:

а) Датчик сопротивления 1х100 ом

Технические параметры

 Снятие положения
 реостатное

 Угол поворота
 0° − 160°

 Нелинейность
 ≤ 1 %

 Переходное сопротивление
 макс. 1,4 ом

 Предельно–допустимое напряжение
 50 В пост.

 Максимальный ток
 100 мА

6) Пассивный датчик тока типа CPT 1Az. Питание петли тока не является составной частью электропривода. Рекомендуемое напряжение питания составляет 18 – 28 В пост. тока при максимальном сопротивлении нагрузки 500 ом. Петлю тока следует заземлить в одной точке. Напряжение питания может быть нестабилизированным, но оно не должно превышать 30 В во избежание повреждения датчика.

Диапазон СРТ 1Az устанавливается потенциометром на корпусе датчика и исходное положение устанавливается путем поворота датчика.

Технические параметры СРТ 1Az:

Снятие положения емкостное

Рабочий ход устанавливаемый от 0° – 40° до 0° – 120°

Нелинейность ≤ 1 %

Нелинейность, включая передачи ≤ 2,5 % (для макс. хода 120°) Гистерезис, включая передачи ≤ 5 % (для макс. хода 120°)

(Нелинейность и гистерезис относятся к значению сигнала 20 мА)

Сопротивление нагрузки 0 – 500 ом

Выходной сигнал 4 – 20 мА или 20 – 4 мА

Напряжение питания для Rz = 0 - 100 ом 10 - 20 В пост.

для Rz = 400 – 500 ом 18 – 28 В пост.

Максимальные пульсации напряжения питания 5 % Макс. мощность, потребляемая датчиком 560 мВт

Сопротивление изоляции 20 Мом при 50 В пост.

Электрическая прочность изоляции 50 В пост.

Температура окружающего воздуха рабочей среды от -25 °C до +60 °C

Температура окружающего воздуха

- расширенный диапазон от -25 °C до +70 °C (прочее по запросу)

Габариты Ø 40 x 25 мм

в) Активный датчик тока типа DCPT. Питание петли тока является составной частью электропривода. Максимальное сопротивление нагрузки петли составляет 500 ом.

DCPT легко устанавливается двумя кнопками со светодиодом на корпусе датчика.

Технические параметры DCPT:

Снятие положения бесконтактное магнитнорезистентное

Рабочий ход устанавливается от 60° до 340°

 Нелинейность
 макс. ± 1 %

 Сопротивление нагрузки
 0 – 500 ом

Выходной сигнал 4 - 20 мA или 20 - 4 мA Питание 15 - 28 B пост. тока, <42 мA

Рабочая температура от -25 °C до +70 °C Габариты от -25 °C до +70 °C

Присоединение датчиков СРТ 1A и DCPT является двухпроводным. т. е. датчик, источник питания и нагрузка соединены последовательно. Потребитель должен обеспечить присоединение двухпроводной петли токового датчика к электрической земле сопряженного регулятора, компьютера и т. п. Соединение должно быть выполнено только в одной точке в любом месте петли вне электропривода.

Указатель положения

Электропривод оснащен местным указателем положения.

Отопительный элемент

Электроприводы оснащены отопительным элементом для исключения возможности конденсации водяных паров.

Происоединяется к сети с напряжением 220 В (230 В).

6. ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Внешние электрические цепи

Электропривод оснащен клеммником для присоединения внешних цепей. Клеммник оснащен завинчиваемыми клеммами и рассчитан на присоединение проводников максимального сечения 4 мм². Клеммник доступен после снятия крышки электропривода. К клеммнику присоединены все электрические цепи управления электроприводом. Электропривод оснащен кабельными муфтами для электрического присоединения электропривода.

Присоединение разъемом - по запросу.

Внутренное электрическое присоединение электроприводов

Схемы внутренних цепей электроприводов **MODACT MOP, т. н. 52 039** с обозначением клемм даются в этом каталоге.

Схема внутренних цепей электропривода находится на внутренней стороне крышки электропривода.

Клеммы обозначены цифрами на клейком щитке, который находится на несущей полоске под клеммником.

Максимальный ток нагрузки и номинальное напряжение микровыключателей

Максимальное напряжение микровыключателей составляет 250 В перем. и пост. тока при следующих максимальных значениях тока:

 MO, MZ
 250 В перем./2 A, 250 В пост./0,2 A

 SO, SZ
 250 В перем./2 A, 250 В пост./0,2 A

 PO, PZ
 250 В перем./2 A, 250 В пост./0,2 A

Микровыключатели можно использовать только в одной цепи. На зажимы одного и того же микровыключателя нельзя подавать несколько различных по значению и по расположению фаз направлений.

Сопротивление изоляции

Сопротивление изоляции электрических цепей управления относительно корпуса, а также друг относительно друга составляет не менее 20 Мом. После испытания на влажность сопротивление изоляции цепей управления должно составлять не менее 2 Мом. Более подробная информация представлена в Технических условиях.

Электрическая прочность изоляции электрических цепей

Цепь датчика сопротивления500 B, 50 ГцЦепь датчика тока50 B постЦепь микровыключателей и отопительного элемента1 500 B, 50 ГцЭлектродвигателяUn = 1 x 230 B1 500 B, 50 ГцUn = 3 x 230/400 B1 800 B, 50 Гц

Отклонения основных параметров

Момент выключения ±10 % от максимального значения предела
Скорость перестановки -10 % от максимального значения предела
+15 % от номинального значения (холостой ход)
Установка выключателей сигнализации ±2,5 % от максимального значения предела
(пределы указаны в Инструкции по монтажу)
Гистерезис выключателей сигнализации макс. 4 % от максимального значения предела
Установка выключателей положения ±2,5 % от максимального значения предела
Гистерезис выключателей положения макс. 4 % от максимального значения предела

Зашита

Электроприводы оснащены одним внутренним и одним внешним защитными зажимами для обеспечения защиты от удара электрическим током по ČSN 33 2000-4-41. Одним защитным зажимом оснащен также электродвигатель. Защитные зажимы обозначены знаком в соответствии с ČSN IEC 417 (345550).

7. ОПИСАНИЕ И ФУНКЦИЯ

По своей конструкции электроприводы предназначены для прямого монтажа на орган управления (арматуру и т. п.). Присоединяются с помощью фланца и соединения по ČSN 186314 (ST SEV 5448-85) или по ISO DIN 5210 и DIN 3338.

Трехфазный асинхронный двигатель приводит в движение, через зубчатый перебор, центральное колесо дифференциальной передачи, размещенной в несущем шкафу электропривода (силовая передача). Коронное колесо плане-тарного дифференциала при моторном управлении держится в неменяющемся положении благодаря само-тормозящей червячной передаче. Ручное колесо, соединенное с червяком, позволяет проводить альтернативное ручное управление даже при ходе электродвигателя, не подвергая опасности обслуживающий персонал.

Выходной вал прочно соединен с поводком планетарной передачи. Выходной вал проходит в шкаф управления, где на-ходятся все элементы управления электропривода (блок мо-ментного отключения, позиционный блок и нагревательное сопротивление, возможно установка сигнализационного блока и датчика положения).

Таблица но. 1 – Электроприводы МОДАСТ МОР, т. н. 52 039

- основные технические параметры (используемые электродвигатели - ATAS Наход)

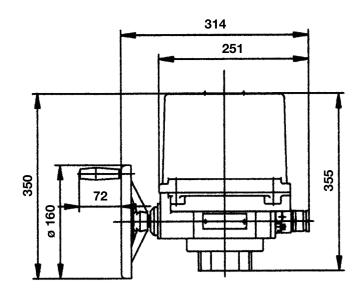
Типовое обозначение	Момент Скорость Рабочий				Электродвигатель						Масса	Типовой номер	
ооозначение	отключе- ния	пусковой	переста- ход новки		Тип	Напря- -жение	Мош- ность	Обороты	In (380 B)	lz / In		основной	дополни- тельный
	[Нм]	[Нм]	[1/мин.]	[об.]		[B]	[кВт]	[1/мин]	[A]		[кг]	12345	678910
MOP 30/65-9		65	9		T42RL477	3x400	0,05	1350	0,24	2	17		xx1xP
MOP 30/83-15		83	15		T42RR478	3x400	0,09	1300	0,34	2,5	17		xx2xP
MOP 30/58-25		58	25		T42RX479	3x400	0,15	1270	0,53	2,2	17		x x 3 x P
MOP 30/39-40	10-30	39	40		T42RX479	3x400	0,15	1270	0,53	2,2	17		x x 4 x P
MOP 30/84-9		84	9	1,5-38	J42RT502	1x230	0,100	1370	0,8	1,7	17	52 039	x x 5 x P
MOP 30/56-15		56	15		J42RT502	1x230	0,100	1370	0,8	1,7	17		xx6xP
MOP 20/27-25	10-20	27	25		J42RT502	1x230	0,100	1370	0,8	1,7	17		x x 7 x P
MOP 60/84-9		84	9		J42RT502	1x230	0,100	1370	0,8	1,7	17		x x D x P
MOP 60/140-9	30-60	140	9		T42RR478	3x400	0,09	1300	0,34	2,5	17		ххАхР
MOP 60/83-15		83	15		T42RR478	3x400	0,09	1300	0,34	2,5	17		ххВхР
MOP 45/58-25	10-45	58	25		T42RX479	3x400	0,15	1270	0,53	2,2	17		x x C x P

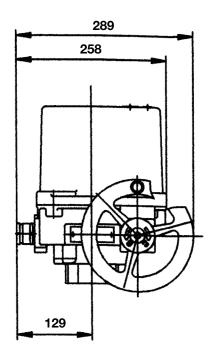
Значение отдельных разрядов типового No электропривода:

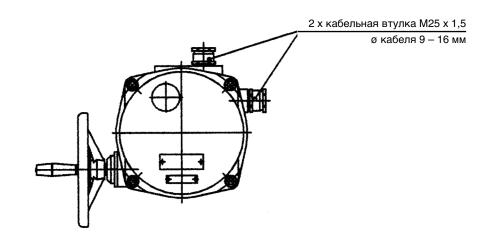
6 ой разряд – способ механического и электрического присоединения:

Электрическое и механическое присоединение	клемник	конектор
присоединение F07, форма С	1 x x x P	CxxxP
присоединение F07, форма D	2 x x x P	DxxxP
присоединение F07, форма Е	3 x x x P	ExxxP
присоединение F10, форма C	4 x x x P	JxxxP
присоединение F10, форма D	5 x x x P	KxxxP
присоединение F10, форма E	6 x x x P	LxxxP
присоединение F10, форма A	7 x x x P	FxxxP
присоединение F10, форма B1	8 x x x P	HxxxP
присоединение F07, форма B1	9 x x x P	BxxxP
присоединение F07, форма А	0 x x x P	AxxxP

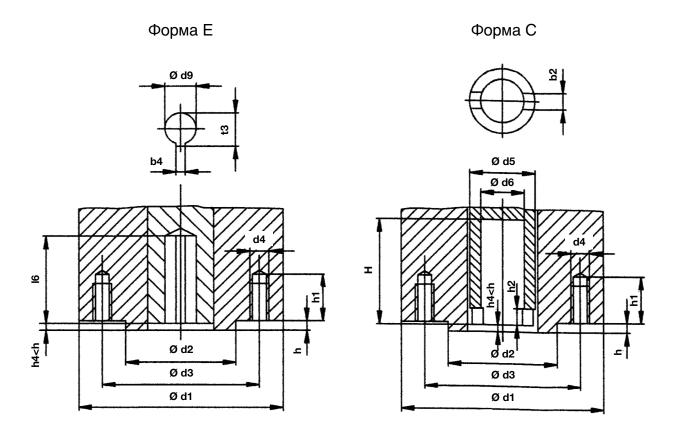
7 ой разряд – желаемое время блокировки момента:


x 0 x x	время блок. от 1,5 до 3 оборотами выходного вала после возврата
x 1 x x	время блок. от 0,75 до 1,5 оборотами выходного вала после возврата
x 2 x x	время блок. от 0,4 до 0,75 оборотами выходного вала после возврата

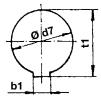

8 ой разряд – скорость перестановки-см. Таблицу но. 1

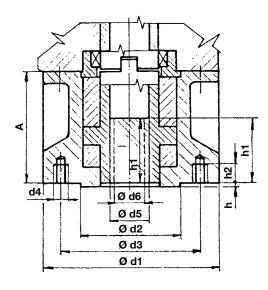

9 ый разряд – возможность использования датчика положения:

	без БМО	с БМО
без датчика положения	x x x 0 P	x x x 4 P
омический датчик 1х 100 ом	xxx1P	x x x 5 P
токовый датчик CPT 1Az	x x x 2 P	xxx6P
токовый датчик DCPT с блоком питания	xxx3P	xxx7P


Габаритный чертеж электроприводов МОРАСТ МОР, т. но. 52 039

Механические присоединительные размеры электроприводов **МОДАСТ МОР, т. но. 52 039**

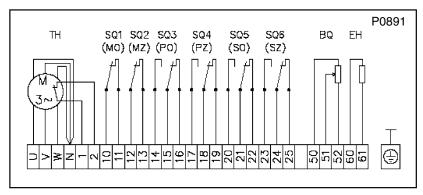



размер общие значения для обои				ля обоих в	идов		значения для вида С				значения для вида Е					
фланца	Ø d1	Ø d2f8	Ø d3	d4	количество отв. с резьбой	h1	h	Ø d5	h2	Н	b2H11	Ø d8	Ø d9H8	l6 min	t3	b4Js9
F 07	125	55	70	M8	4	16	3	40	10	125	14	28	16	40	18,1	5
F 10	125	70	102	M10	4	20	3	40	10	125	14	28	20	55	22,5	6

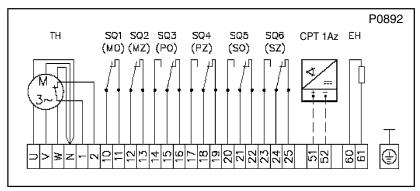

Переходы электроприводов МОРАСТ МОР, т. но. 52 039

Форма А

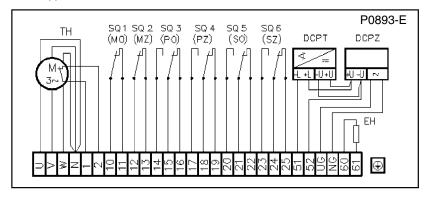
Форма В1


	Размер	52 039
	ød1	125
	ød2 f8	70
A, B1	ød3	102
(идентичные	d4	M10
размеры)	количество отверстий d4	4
	h	3
	h2 мин.	12,5
	Α	63,5
	ød5	30
Α	ød6 макс.	26
	h1 макс.	43,5
	I мин.	45
	Α	63,5
	ød5	30
	I1 мин.	45
B1	h3 макс.	3
	b1	12
	ød7 H9	42
	t1	45,3

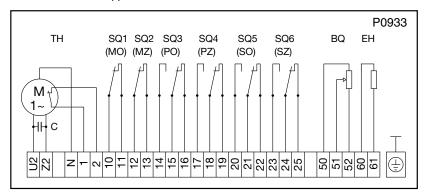
Схемы внутреннего электрического присоединения электроприводов **МОДАСТ МОР, т. но. 52 039**


Пояснения:

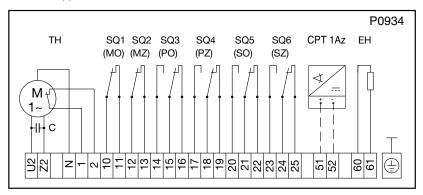
SQ1 (<i>MO</i>)) – включатель моментов »открыто«	CPT 1Az	– токовый датчик CPT 1Az
SQ2 (MZ)	- включатель моментов »закрыто«	DCPT	 токовый датчик DCPT
SQ3 (PO)	- включатель положения »открыто«	DCPZ	– источник питания для DCPT
SQ4 (PZ)	– включатель положения »закрыто«	M1~	– однофазный электродвигатель
SQ5 (SO)	– сигнал. включатель »открывание«	M3~	– трехфазный электродвигатель
SQ6 (SZ)	- сигнал. включатель »закрывание«	TH	– термоконтакт
BQ	 омический датчик 100 ом 	EH	- отопительное сопротивление


Датчик положения: омический 100 ом

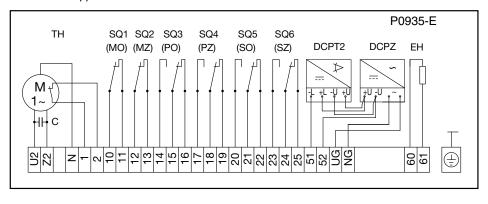
Датчик положения: токовый 4 – 20 mA или без датчика



Датчик положения: токовый 4 – 20 mA с источником питания



Микровключатели можно использовать только для цепей со сходным потенциалом. На контакты одного микровключателя не могут быть подведены два напряжения разных величин или фаз. Контакты микровключателей изображены в промежуточном положении. У исполонения с токовым датчиком потребитель должен обеспечить подключение двухпроводного контура токового датчика к электрической земле регулятора, компьютера и т.д. Подключение должно быть осуществлённо в одном месте в любой части контура за пределами электропривода.


Датчик положения: омический 100 ом

Датчик положения: токовый 4 - 20 mA или без датчика

Датчик положения: токовый 4 - 20 mA с источником питания

Микровключатели можно использовать только для цепей со сходным потенциалом. На контакты одного микровключателя не могут быть подведены два напряжения разных величин или фаз. Контакты микровключателей изображены в промежуточном положении. У исполонения с токовым датчиком потребитель должен обеспечить подключение двухпроводного контура токового датчика к электрической земле регулятора, компьютера и т.д. Подключение должно быть осуществлённо в одном месте в любой части контура за пределами электропривода.

Разработка, производство, продажа и техобслуживание электроприводов и распределительных устройств, обработка листов высшего качества (оборудование TRUMPF), порошковый покрасочный цех.

ПЕРЕЧЕНЬ ВЫПУСКАЕМЫХ ЭЛЕКТРОПРИВОДОВ

KP MINI, KP MIDI

Электроприводы вращения однооборотные (до 30 Нм)

MODACT MOK, MOKED, MOKP Ex, MOKPED Ex

Электроприводы вращения однооборотные для шаровых вентилей и клапанов

MODACT MOKA

Электроприводы вращения однооборотные, для работы в обслуживаемых помещениях в АЭС

MODACT MON, MOP, MONJ, MONED, MOPED, MONEDJ

Электроприводы вращения многооборотные

MODACT MO EEX, MOED EEX

Электроприводы вращения многооборотные взрывобезопасные

MODACT MOA

Электроприводы вращения многооборотные, для работы в обслуживаемых помещениях в АЭС

MODACT MOA OC

Электроприводы вращения многооборотные для работы под оболочкой АЭС

MODACT MPR Variant

Электроприводы вращения рычажные с переменной скоростью перестановки

MODACT MPS, MPSP, MPSED, MPSPED

Электроприводы вращения рычажные с постоянной скоростью перестановки

MODACT MTN, MTP, MTNED, MTPED

Электроприводы прямоходные линейные с постоянной скоростью перестановки

Поставка комплектов: электропривод + арматура (или редуктор MASTERGEAR)

ТРАДИЦИЯ – КАЧЕСТВО – НАДЕЖНОСТЬ

ZPA Pečky, a.s. tř. 5. května 166 289 11 PEČKY, Чешская республика www.zpa-pecky.cz тел.: +420 321 785 141-9 факс: +420 321 785 165 +420 321 785 167 e-mail: zpa@zpa-pecky.cz